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Abstract— Teleoperated robotic characters can perform ex-
pressive interactions with humans, relying on the operators’
experience and social intuition. In this work, we propose to
create autonomous interactive robots, by training a model to
imitate operator data. Our model is trained on a dataset of
human-robot interactions, where an expert operator is asked to
vary the interactions and mood of the robot, while the operator
commands as well as the pose of the human and robot are
recorded. Our approach learns to predict continuous operator
commands through a diffusion process and discrete commands
through a classifier, all unified within a single transformer
architecture. We evaluate the resulting model in simulation and
with a user study on the real system. We show that our method
enables simple autonomous human-robot interactions that are
comparable to the expert-operator baseline, and that users can
recognize the different robot moods as generated by our model.
Finally, we demonstrate a zero-shot transfer of our model onto
a different robotic platform with the same operator interface.

I. INTRODUCTION

Today, a wide variety of robotic systems are capable of
expressing a rich set of behaviors, including quadrupeds
[1], [2], humanoids [3], and non-anthropomorphic robots
[4]. These systems are suitable for human-robot interaction
(HRI), in particular when controlled by a skilled operator.

Operators can assess the environment, interpret the be-
havior of the human, and initiate appropriate interactions
effectively. A key challenge is achieving autonomous HRI
without an operator in the loop.

Full autonomy in HRI combines decision-making, motion
control, and social interactions [5], [6]. Furthermore, it
requires incorporating aspects of the theory of mind [7],
such as understanding intent, beliefs, emotional states, and
desires—both of the robot itself and the human. While
such capabilities remain an open challenge, we observe that
human operators already enable robots to convey expressive
and lifelike behaviors through their experience and simple
social cues such as human movements. For example, a shy
robot might follow the human while keeping a safe distance
and looking towards the ground, or a joyful robot might
run closely behind the human and initiate dancing motions
from time to time. Inspired by this, we aim to develop a
framework that allows robots to autonomously engage in
interactions—without contact—by approximating the human
state through the robot-relative human pose, and express
different moods at a level comparable to a human operator.
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Fig. 1. Overview of our approach. We first collect a human-robot interac-
tion dataset with a remote operator (red, top left). A motion control module
takes operator commands and maps them to robot actions (cyan, middle).
We then train a diffusion-based model that learns to imitate the operator
(blue, bottom left). Our system learns to perform simple interactions with
a human and express different moods. Dashed lines indicate components
only required for data collection and training.

Developing an expressive and autonomous system for HRI
requires methods that are flexible, expressive, and scalable.
Heuristic-based approaches [8], [9] are inherently limited in
scalability, require expert knowledge, and may need to be
redefined for each robot. Similar challenges arise when defin-
ing rewards for a reinforcement learning policy [10], with
the additional difficulty of realistically simulating human
motions [11] or long training times in the real world [12]. An
alternative is to collect real-world data and train supervised
models, a popular approach in robotic manipulation [13],
[14]. In the context of HRI, collecting such data can be time-
consuming. Recent advances in user-controllable robots via
gamepads offer a promising approach to simplifying data
collection in such settings.

In this work, we introduce a novel framework for HRI
that learns to imitate operators. As shown in Fig. 1, we
first collect a human-robot interaction dataset, where an
external operator controls the robot to interact with a human
and express varying moods. The dataset includes the poses
of the robot and the human, along with the operator’s
teleoperation commands. Crucially, the problem statement
focuses on imitating the operator rather than the robot’s
actions, offering several advantages over relearning low-level
control. Leveraging existing motion control eliminates the
need to relearn the complex and data-intensive process of the
robot’s dynamics. Furthermore, it ensures the robot maintains
its motion style, robustness, and safety constraints.

In our method, we use diffusion models to imitate oper-
ators and predict diverse interactions. We introduce several
simple yet effective techniques to adapt these models for real
robotic platforms and human-robot interactions. As opposed
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to previous motion diffusion frameworks, which primarily
focus on continuous predictions [15], [16], we propose a
model that can predict both continuous commands and dis-
crete events, matching the layout of gamepads. Our method
consists of a unified transformer backbone that integrates a
diffusion-based module for continuous signal prediction and
a classifier for discrete event prediction. To enable our model
to react dynamically to human movement, we condition on
the time-varying robot-relative human pose. Additionally, we
propose masking input signals after encoding rather than
before [15], since zero input signals can be a valid input,
such as indicating the proximity of the human to the robot.

Our experiments show that with less than one hour of data,
our framework learns to perform autonomous interactions,
exhibit multiple moods, and switch between different control
modes, such as walking and standing. In a user study, we
let 20 users interact with our system and show that they
struggle to distinguish between autonomous and operated
behavior for simple interactions. Furthermore, we show that
users can successfully recognize the different moods of the
robot. Lastly, we demonstrate the zero-shot transfer of our
models trained with interaction data collected with a non-
anthropomorphic robot to a humanoid robot.

In summary, our contributions are:
• a novel system enabling simple autonomous human-

robot interactions and expressing different moods using
a small dataset of human operator data for training,

• a model to imitate operator commands based on human
pose, predicting both continuous and discrete signals,

• and empirical evidence through simulated and real-
world experiments that our model generates realistic
human-robot interactions and transfers across robotic
platforms with the same operator interface.

II. RELATED WORK

We split related work into character control and learning-
based HRI. Note that we consider our work as building up the
machinery required for effective autonomous HRI, and there
is extensive orthogonal research in social HRI that looks into
the effects of robot personalities [17] and emotions [18]. This
opens the door for interesting future studies. We refer to [6],
[19], [20] for a detailed overview of social HRI.

A. Character Control

Learning-based controllers have shown remarkable suc-
cess in controlling simulated and real-world characters or
robots. Broadly, these controllers can be categorized into two
types: Imitation-based controllers, which rely on dense kine-
matic reference motions as input [21], [22], [23], [24], [25],
and goal-driven controllers [4], [15], [26], [27], which take
high-level commands—such as joystick inputs—to control
the character. These two paradigms are often closely inter-
twined. Many controllers leverage dense motion references
during training, but exploit control through sparse user input
at inference time [28].

With the advances of diffusion models [29] and their appli-
cations in motion generation [16], recent work investigated

their application in control settings. CAMDM [15] generates
kinematic motion based on control signals in an autoregres-
sive fashion. Closer to our work is the more direct intersec-
tion between text-conditioned diffusion models and physics-
based controllers. RobotMDM [30] generates motions tai-
lored for a pretrained controller, whereas CLoSD [31] inte-
grates a controller into the generation process. Our model
builds on such physics-based approaches, but instead of
dense references, we learn to imitate user inputs provided
during data collection for human-robot interaction, which
reduces the data requirement.

Diffusion models have also been explored in the context
of HRI. Yoneda et al. [32] propose a system for shared
autonomy, where an autonomous agent assists a user in
teleoperating a robot. Through the use of a diffusion model,
the authors learn a model that trades off user autonomy for
optimal behavior. Diffusion Co-Policy [33] is a method for
a collaborative table moving task. Like them, we base our
modeling on a diffusion model. However, in contrast to their
approach, we support an action space with more than 2D
continuous dimensions, supporting a combination of discrete
and continuous actions. Moreover, our model controls the
robot fully autonomously instead of controlling a subsystem
that is attached to a robot commanded by a human.

B. Learning-Based Human-Robot Interactions

The application of deep learning techniques to autonomous
HRI has recently gained popularity. Often, task-specific and
isolated behaviors are investigated, such as human-robot
handshakes [34], [35], human-robot handovers [36], [37], or
table carrying [38]. For a broader overview that includes non-
learning-based techniques, we refer to [5], [6].

A large body of work has focused on using learning-based
methods for physical human-robot interaction. A common
approach is to leverage human-human interaction demon-
strations. Nikolaidis et al. [39] propose an unsupervised
learning algorithm to cluster human behavior and learn robot
policies that align with the user. In [40], the authors introduce
a deep generative model representing the joint distribution
of interactions in latent space via variational auto-encoders.
Similarly, some works focus on learning joint latent represen-
tations between the human and robot from demonstrations,
such as for human-robot hand interactions [41] or social
motion forecasting [42]. In Co-GAIL [43], a human policy
evolves along with a robotic policy via adversarial imitation
learning. To adhere to the diversity of human behavior, a
latent representation that represents the human’s intent is
used, similar to [44] for multi-agent interactions. While there
are similarities to these methods, our setting has different as-
sumptions. In particular, we do not assume access to human-
human demonstrations, as remotely operated robotic systems
can be substantially different from the human anatomy, ren-
dering a mapping between human demonstration and robot
challenging. Furthermore, these methods typically focus on
collaborative tasks with physical interactions, whereas we fo-
cus on non-physical interactions, such as following humans,
expressing moods, and initiating pre-defined behaviors.
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operatormocap system

Fig. 2. Our capture setup. An operator controls the robot to interact
with a human participant. The poses of the human and robot, as well as the
operator commands, are recorded in a motion capture studio.

III. BACKGROUND DIFFUSION MODELS

Diffusion models [29] have become popular in various
domains such as the generation of images [45], videos [46]
or motion sequences [16]. They are a family of generative
models particularly well suited for modeling complex data
distributions. Diffusion models comprise a forward and a
backward process. The forward process is a discretization of
Langevin dynamics, where in each step, Gaussian noise ϵt is
added to a data sample x0, leading to progressively noisier
versions of that sample xt:

xt =
√

1− βtxt−1 +
√
βtϵt, ϵt ∼ N (0, I). (1)

Recursively applying this update yields

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (2)

ᾱt =

t∏
i=1

(1− βi), (3)

where βi is a variance scheduler for the noise, with i or
t indicating the diffusion step. In the reverse process, the
data is gradually denoised into a clean sample, which is
modeled by the probability distribution pθ(xt−1|xt). This
denoising step is learned via a neural network parameterized
by θ. We follow MDM [16] and directly predict the clean
output x̂0. Additionally, in conditional diffusion models, the
probability distribution is extended by conditioning signals
c, yielding pθ(x0|xt, c). During inference, the model can
generate diverse outputs from randomly sampled Gaussian
noise and the conditioning signals.

IV. PROBLEM SETTING

Given a sequence of past human poses p ∈ IRM×7 and
robot poses r ∈ IRM×7, which each consist of M frames of
global 3D positions and 4D orientations (quaternions), our
goal is to predict a future sequence of continuous operator
commands x1:N ∈ IRN×j, where N indicates the prediction
horizon and j is the number of commands per frame. In
addition to the continuous command predictions, such as

joysticks on a gamepad, we are also interested in predicting
discrete events, which are typically triggered through button
presses on operator interfaces. We differentiate between
discrete events that trigger a certain behavior db, such as
a pre-defined jumping or dancing motion (see Sec. VI-A),
and the mode dm of the robot, e.g., whether it should be in
standing or walking mode. Each prediction window has one
prediction per discrete input, rather than a separate prediction
per frame. Both the continuous and discrete signals are
passed as conditioning to a motion control module that
controls the robot (see Sec. VI-A). Please note that we use
subscripts to indicate the diffusion step and superscripts to
describe the sequential prediction.

V. METHOD

Our framework consists of two main components: human-
robot interaction data collection and a model to train au-
tonomous interactions.

A. Human-Robot Interaction Data Collection

Our capture setup is shown in Fig. 2 and consists of
a robot, an operator controlling the robot, and a human
interacting with it. We aim to capture the human poses p, the
robot poses r, the continuous operator commands x as well
as the discrete commands db and dm. We record operator
commands directly on the input interface. To capture human
and robot poses, we leverage the OptiTrack motion capture
system [47], placing markers on the robot and a hat worn by
the human.

To collect data, we ask an expert operator to perform inter-
actions that are responsive to human pose, such as following
the human and varying between expressing different moods
through motions. For instance, in the shy mood, the robot
tends to look at the ground while interacting with the human,
whereas in the angry mood, the robot frequently shakes its
head and refuses interactions when the human approaches.
See Tab. I for an overview of the collected data and a more
detailed description of the moods. In our data collection, the
robot is operated by a single expert operator and two humans,
one after another, interact with it.

B. Method Architecture

Our method architecture is illustrated in Fig. 3. Inspired by
the CAMDM framework for character control in simulation
[15], we propose a framework for real-world human-robot
interaction. To address the challenges of human-robot inter-
actions, we contribute several domain-specific adjustments
and extensions to the architecture. Our model has a trans-
former backbone and is conditioned on multiple components;
the history of human poses cp and operator commands cx,
and the diffusion step t. Before passing the history of human
poses to the model, we transform them into a robot-relative
frame using the history of robot poses r.

In summary, our model G is defined as follows:

(x̂0,db,dm) = G(cp, cx, t,xt,qb,qm). (4)



Fig. 3. Overview of our method architecture. We use conditions
in the form of past human poses and commands (yellow). A diffusion
model predicts operator commands to control the robot model (blue). The
transformer also outputs discrete predictions for different behavior and the
mode (red).

1) Continuous Command Prediction via Diffusion: To
predict continuous operator commands, we use a diffusion
model (see Sec. III). More specifically, during training, we
alternate between noising clean data samples x0 to noisy
signals xt according to Eq. 2 and denoising steps to predict
the clean signals x̂0.

We apply the separation of conditioning tokens and
classifier-free guidance on past commands as proposed by
[15]. In contrast to their model, we found that dropout in
the positional encoding leads to noisy outputs, hence do
not adopt it in our model. Furthermore, the conditioning
signals in our case can be close to zero, for example, when
the human is close to the robot. Therefore, we propose to
apply masking to the conditioning after the encoding layers
instead of to the raw conditions [15], because otherwise zero-
masking could be mistaken by the model for actual zero
conditions. To account for the diversity in human height,
we augment the available human pose data by adding a
random offset (± 0.3m) in the negative gravity direction
during training.

2) Discrete Event Prediction: It is non-trivial to mix
continuous and discrete signals in a diffusion process. We
propose to add the discrete event predictions as auxiliary
tasks to our transformer model. In particular, we add clas-
sification query tokens, specifically qb for discrete behavior
and qm for mode, to the transformer architecture [48]. The
output of the transformer encoder has a head to predict the
mode dm and pre-defined discrete behavior db, respectively.
The model learns to select from several classes of behaviors
and a default class (i.e., no discrete event occurring). Note
that these predictions use the same transformer encoder, but
no diffusion is applied. To train the classification heads, we
use weighted cross-entropy losses, due to the imbalance in
the data between the rare discrete events and the default class.

TABLE I
MOTION TYPES, LENGTHS, AND DESCRIPTIONS

Category Length (min) Description

Default 8 Follows the human, retreats if the human
walks toward it, looks at the human when
in standing mode.

Angry 6 Ignores the human, walks away if ap-
proached, shakes its head, occasionally
triggers angry animations.

Sad 8 Walks away from the human, shakes its
head, looks mostly down at the ground.

Shy 7 Approaches the human carefully, oc-
casionally stops, mostly looks at the
ground, and tries to avoid eye contact.

Happy 8 Turns in circles, runs after the human,
and often expresses positivity through
animations such as dancing or jumping.

VI. EXPERIMENTS

In Sec. VI-A, we describe the robotic platform used in our
experiments and provide implementation details about model
parameters and runtime of our approach in Sec. VI-B. We
conduct experiments in simulation in Sec. VI-C. In Sec. VI-
D, we perform a user study in the real world and demonstrate
zero-shot transfer to a different robot in Sec. VI-E. See our
video1 for more qualitative results.

A. Robotic Platform

We build on the platform developed by Grandia et al. [4],
which proposes a new bipedal character design and control
approach for entertainment applications. A reinforcement
learning based control architecture is used to robustly imitate
artistic motions conditioned on continuous and discrete com-
mand signals. During runtime, these command signals are
generated by an animation engine that fuses user-inputs with
predefined animation content. An intuitive operator interface,
implemented on the hand-held operator controller, enables
expressive real-time show performances with the robot.

The robot, 0.66m tall, with a total mass of 15.4 kg, has
5 degrees of freedom (DoF) per leg and a 4 DoF neck.
Moreover, the robot is equipped with a set of show functions:
a pair of actuated antennas and illuminated eyes, and a
headlamp. Additionally, the robot has a stereo pair of loud-
speakers in both the body and the head. These components
provide additional means to express moods. Their behavior is
synchronized with the motion of the robot through animation
signals from the animation engine and state feedback. We
refer the reader to [4] for more details.

B. Implementation Details

Our transformer encoder has a latent dimension of 128,
a feedforward size of 256, and two attention heads across
2-layers. We train for 5000 epochs with a batch size of 128
and a learning rate of 1e-4. We select a past window of 15
frames and predict 25 future frames (M and N in Sec. IV).
The number of diffusion steps is set to 8. We predict 10
continuous signals, up to 8 discrete behaviors (depending on

1https://youtu.be/4U4etupwzhQ?si=NNHM7NqjAKWoo32B

https://youtu.be/4U4etupwzhQ?si=NNHM7NqjAKWoo32B


Angry Mood

Sad Mood

Fig. 4. Example behavior of different moods. In the angry mood, the robot refuses interactions and steps away from the human (top). In the sad mood,
the robot turns away from the human, has its head tilted towards the ground and occasionally shakes its head (bottom).

the mood), and 2 modes (walking and standing). To improve
signal quality, we apply a simple Gaussian smoothing filter
to the model’s predictions before sending them to the robot.
This helps to reduce the noise introduced by the motion
capture conditioning.

All computations, including our diffusion model, motion
control policy, state estimation, and the animation engine,
run on the robot’s on-board computer. Both human pose and
autonomous operator commands are sent to our model at
50Hz. The predicted operator commands are passed to the
animation engine (see Sec. VI-A), which fuses the commands
with animation content and sends it to a control policy. This
low-level control policy outputs actuator setpoint commands,
which are interpolated to 600Hz and sent to the actuators’
PD controllers. In addition to teleoperation commands, the
low-level policy also receives proprioceptive state inputs
from the robot.

C. Simulation-Based Evaluation

Quantifying engaging and natural interactions in simula-
tion is challenging, much like defining general heuristics for
robot control or rewards for learning behavior. Nevertheless,
to measure and compare architectural choices, we define a
set of metrics that provide insights into model performance:

Facing Angle Error (FAE): measures the average angle
between the robot’s forward direction and the vector from
the robot’s root to the human in degrees. We assume that the
robot should be facing the human (in the default mode).

Tracking Error (TE): measures the average distance
between the human and the robot in the x-y plane. We
assume that the robot should follow the human closely.

Mean Squared Derivative (MSD): measures how
rapidly the continuous signals change. This helps identify
noisy predictions and abrupt transitions between prediction
windows. We average over all signals.

Fig. 5. Diversity of our framework. Given the same starting point
(black trapezoid) and a fixed human position (black star), we run our model
multiple times and plot x-y positions. As can be seen, the model generates
different behavior for the same human pose conditions.

We compare our approach to a transformer baseline and
ablate design choices of our architecture. For our simulation
experiments, we use a 75/25 train-test split for the default
mode. During evaluation, we replay human motions from
the test set and control the robot using our model, streaming
the human-relative pose from simulation directly to our
model. Additionally, as shown in Fig. 5, we qualitatively
demonstrate that, given a fixed human pose and a single
initial robot pose, our model generates diverse outputs.

1) Baseline Comparison: Our baseline is a deterministic
model that directly maps from human pose as input to
operator commands as output. To achieve this, we use the
same transformer architecture that is used in our model but
remove the diffusion process. To account for the sequential
output, we add query tokens as inputs. As can be seen
in Tab. II (top), our model achieves better tracking of the
human (lower FAE and TE) and leads to a cleaner signal and
transitions between prediction windows, as indicated by the
lower MSD score. This shows that using a diffusion model is
beneficial over using a transformer model without diffusion.



TABLE II
SIMULATION-BASED EVALUATIONS

Variant FAE [deg.] ↓ TE [m] ↓ MSD ↓

transformer 57.66 ± 19.61 1.49 ± 0.05 4.40 ± 2.29
Ours 25 frames 43.85 ± 2.40 1.47 ± 0.03 2.42 ± 0.40
w/ dropout 39.48 ± 2.19 1.44 ± 0.02 5.76 ± 0.32
w/o human 100.28 ± 4.74 3.20 ± 0.50 2.34 ± 0.26
w/o commands 43.12 ± 2.66 1.44 ± 0.01 14.80 ± 0.69
Ours 75 frames 56.97 ± 1.98 1.54 ± 0.01 4.11 ± 0.39
Ours 50 frames 50.58 ± 12.31 1.48 ± 0.02 2.45 ± 0.33
Ours 25 frames 43.85 ± 2.40 1.47 ± 0.03 2.42 ± 0.40

2) Ablations: To ablate the components of our architec-
ture, we train different variants of our model by removing
the human pose history cp (w/o human), command history
cx (w/o commands), dropout (w/o dropout). Additionally, we
evaluate the influence of different prediction window lengths
(25, 50, and 75 frames). We present results in Tab. II. As
expected, the variant without information about the human
pose leads to high tracking errors. The variant without
conditioning on past commands leads to the best tracking
of the human, because no constraints are imposed on the
coherence of the signal to previous predictions. Hence, the
transitions between windows are often abrupt and jerky, as
indicated by the high MSD (14.8). Our final variant (Ours 25
frames) trades off signal coherence with close tracking of the
human. When comparing different prediction windows, we
find that 25 frames yield the best tracking performance while
staying close to real-time, considering the computational load
of the diffusion process. Note that all but the window size
ablations are trained with a window of 25 frames.

D. Real-World Evaluation

We perform qualitative and quantitative real-world eval-
uations. Please see Fig. 4 and our accompanying video for
qualitative results. In our empirical evaluations, we aim to
answer whether our model can enable 1) interactions with
the robot that feel similar to interactions controlled by a
trained operator and 2) a robot to express different moods
that are recognizable by humans. To analyze these questions,
we propose a two-stage in-person user study. We run the
user study with 20 participants, aged between 22 and 44
(M=30, SD=4.8), 12 males and 8 females. The participants
were recruited from our organization, but were neither part
of the project nor had experience interacting with our robot.
After the interactive part of the study, we let participants fill
out a small qualitative questionnaire.

1) Questionnaire: The anonymous questionnaire com-
prises three statements. The users are asked how much they
agree with each statement on a 5-point scale, with a score of
1 indicating “strongly disagree” and 5 indicating “strongly
agree”. The first statement is “I have experience interacting
with robots”, which received a mean score of 2.2 (STD=1.0),
showing that participants are not very experienced interacting
with robots. The other statements, “The interaction felt
engaging and enjoyable” and “I felt like the robot was
reacting to me” received mean scores of 4.9 (STD=0.3)

TABLE III
OPERATOR RECOGNITION CONFUSION MATRIX

GT \ User Operator Autonomous

Operator 0.55 0.45
Autonomous 0.46 0.54

TABLE IV
MOOD RECOGNITION CONFUSION MATRIX

GT \User Happy Sad Angry Shy

Happy 0.74 0.00 0.11 0.16
Sad 0.00 0.74 0.05 0.21
Angry 0.26 0.00 0.74 0.00
Shy 0.05 0.11 0.16 0.68

and 4.7 (STD=0.5), respectively. These scores indicate that
participants enjoyed interacting with the robot and felt like
the robot was reacting to their movements.

2) Operator Recognition: In this experiment, we follow
a protocol where each participant experiences one of two
settings. In the first setting, the operator is controlling the
robot to interact with the human in the default mode,
following the human without expressing different moods. In
the second setting, our model controls the robot to exhibit the
same behavior. We demonstrate each setting to the user for 30
seconds, after which the participant has to guess whether it
was our model or the operator controlling the robot. In total,
we show each setting twice (4 trials in total) in randomized
order. To avoid bias, the operator pretends to be actively
controlling the robot, even in the autonomous setting. We
report the recognition accuracy in a confusion matrix shown
in Tab. III, where rows indicate the presented setting (GT)
and columns are the user-predicted setting (User). As can be
seen, the accuracy is close to 50%, with scores of 55% for
the active control by the operator and 54% for our autonomy
mode. The autonomous model is classified as operator 46%
of the time and the operator is classified as autonomous
model 45% of the time. These results indicate that it is
difficult for users to tell the two models apart, and that
our model in default mode is close to an expert operator’s
abilities. Three participants, who were more experienced
with robots, figured out tricks to distinguish between the
models. For example, these participants realized that if we
lose track of the human at the border of the mocap space,
the model will only start following once inside the tracked
space.

3) Mood Recognition: To determine whether the robot
can express moods through our approach, we demonstrate the
four moods (happy, sad, angry, shy) to the humans (see Tab. I
for a detailed description). We randomize the order of moods
between participants and let them interact with the robot.
An interaction takes one minute, after which humans have
to provide a forced-choice answer. We do not explain the
moods in detail and simply provide the moods to the humans.
To avoid external bias, we use neutral eye coloring during
this experiment (as opposed to the colored eyes for different



Fig. 6. Zero-shot transfer to a humanoid robot. Our method trained with data collected via our non-anthropomorphic bipedal robot can successfully
transfer behavior such as tracking the human without retraining.

moods, cf. Fig. 4). We report results in a confusion matrix
shown in Tab. IV, where rows indicate the presented setting
(GT) and columns are the user-predicted setting. Generally,
the users were able to correctly select the presented mood
with an accuracy between 68% and 74%. The confusion
cases give some interesting insights into the perception of
certain moods. The angry mood was considered happy (26%)
because certain discrete behaviors, such as body shaking
in disagreement, were considered a shake that expresses
excitement (cf. video 35 s). In contrast, the happy mood
was considered angry by some (11%), because of the sprint
towards the human, which was considered as an aggressive
“charging” motion (cf. video 1min45 s). The sad mood was
misclassified as shy (21%) due to the robot mostly looking
at the ground. We believe these results validate that users can
reliably identify the moods, with reasonable explanations for
the confused cases. This also shows that there is no clear
line between moods, and certain behaviors are interpreted
differently between humans.

E. Zero-Shot Cross-Embodiment Transfer

To demonstrate that our method is applicable to dif-
ferent robotic platforms, we perform zero-shot transfer to
a humanoid robot. Importantly, the interface mapping is
maintained between the two platforms, i.e., the same joystick
is used for controlling the walking direction and speed of
the two robots. We qualitatively show in Fig. 6 and our
supplemental video that the default behavior, such as tracking
the human, turning, and walking backwards (cf. Tab. I), can
be successfully transferred to a different platform. Notably,
the training data used for our model was collected using the
robot presented in Sec. VI-A.

VII. DISCUSSION

While our approach takes a step towards autonomous
human-robot interactions, it has several limitations. The main
limitation is the reliance on a motion capture system to
sense the robot-relative human pose. In the future, we hope
to integrate perception to enable deployment in real-world
environments. Beyond estimating global human pose, future
work could predict the full-body human pose or even facial
expressions, enabling more nuanced interactions. For exam-
ple, we manually trigger the different moods in this work. A
promising direction is exploring a single model conditioned
on detailed human states to autonomously predict mood

transitions. Furthermore, we do not model complex behav-
iors with long-term dependencies and high-level decision-
making, such as combining multiple semantically different
interactions into a cohesive interaction. Instead, our focus is
on achieving performance comparable to human operators
for shorter and simpler interactions, such as expressing
moods and reacting to human pose. For more complex
behavior, future research could explore the integration of
a high-level decision-making module that links multiple
interactions together.

Our data was captured with a single operator and two
human subjects. Our user study revealed a large diversity in
how humans interact with the robot. Expanding the dataset
with more participants could improve the model’s robustness
to diverse human behavior while increasing the diversity of
interactions our model predicts. This would also enhance
the adaptability of our model to different human heights,
which we currently address through height randomization
during training. Future work could also explore interactions
that involve physical contact. Finally, current interactions are
limited to one robot and one human. An exciting avenue
for future research is extending our work to multi-robot and
multi-human interactions.

VIII. CONCLUSION

We have proposed a method that enables autonomous
human-robot interactions by learning the mapping from
human pose to operator commands with a diffusion-based
approach, predicting both continuous commands as well as
discrete button presses. By relying on operator instead of
actuator commands, we train a model with less than 40
minutes of data, drastically reducing data requirements. Our
approach also enhances safety, as operator interfaces are
typically designed with built-in safety guarantees. Lastly, our
experiments demonstrate that users enjoy interacting with
the system, can reliably recognize different moods, and find
it difficult to distinguish between autonomous or operator-
controlled robot behavior for simple interaction.
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[35] S. Christen, S. Stevšić, and O. Hilliges, “Demonstration-guided deep
reinforcement learning of control policies for dexterous human-robot
interaction,” in International Conference on Robotics and Automation
(ICRA), 2019.
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